
TLMu

Edgar E. Iglesias

AXIS Communications AB

edgar.iglesias@axis.com

edgar.iglesias@gmail.com

June 10, 2011

Abstract

Using Transaction Level Modeling (TLM) is an in-
creasingly popular way of doing early modeling of
large systems. By using higher abstraction levels,
it is possible to keep down the level of complexity
and increase the speed of simulations. TLM en-
ables the creation of virtual platforms that are well
suited not only for early design exploration, but
also for early software development.

When modeling large systems, a common re-
quirement is the need for modeling CPUs. Even
more, the need to model multiple CPU’s of varying
architectures, is increasing.

In this work we introduce TLMu, a modified ver-
sion of QEMU suitable for integration with Sys-
temC TLM-2.0 based systems. We show that it is
possible to achieve high emulation speed, to model
systems with multiple CPU cores of different archi-
tectures, to get rough performance estimations and
to get good debugging facilities for software devel-
opers.

1 Introduction

QEMU is an emulator framework capable of cross
running user-space linux applications across differ-
ent architectures and also able to cross run com-
plete operating systems across different architec-
tures.

QEMU uses binary translation when emulating
CPU’s to achieve high emulation speed.

TLMu extends QEMU by allowing it to interact
with device models provided by an external emula-
tor. TLMu also makes it possible to have multiple

CPU emulators in the same process, emulating dif-
ferent architectures (e.g an ARM and a MIPS core).
TLMu allows good flexibility in how systems can

be partitioned. TLMu can use RAM both internal
to the TLMu instance and also external (provided
by the main emulation system). Different TLMu
instances within an emulator can cross access each
others RAMs and devices.

2 Heterogeneous CPU mix

When building QEMU, you build an emulator per
architecture. TLMu wraps QEMU and a set of
hooks into a set of libraries. A shared library,
libtlmu-{arch}.so and a static libtlmu.a. When-
ever a TLMu CPU core needs to be instantiated,
the corresponding library is cloned and dynamically
loaded into the emulator process.
All the TLMu CPU cores interface with the

TLM-2.0 system through a TLM-2.0 module that
exposes a set of TLM-2.0 sockets. See the TLMu
documentation for more details.

3 Memory accesses

Memory accesses made by a TLMu core may ei-
ther be handled internally (by the TLMu partial
system) or they may be mapped to TLM-2.0 trans-
actions. The TLM-2.0 module that bridges TLMu
access to the TLM-2.0 side supports blocking trans-
port and DMI, but not non-blocking transport.
When mapping RAM’s from which the TLMu

CPU may execute code from, a small limitation
exists. The main emulator needs to tell the TLMu
system in advance which externally mapped areas

1



that are RAM. The reason for this is that internally,
QEMU differentiates heavily between RAM’s and
devices.
It is also possible to make memory accesses from

the main emulator (and thus from other TLMu in-
stances) into the TLMu system. TLMu’s TLM-2.0
wrapper provides a target socket for these accesses.
Accessing RAM’s that are provided by TLMu also
support DMI, but they have no cost models for the
moment.

4 Simulation speed

We ran a reference program that ran a computa-
tionally heavy operation (lets call it XOP) in soft-
ware and also another program that accelerates the
XOP operation by using an emulated hardware ac-
celerator.
We emulate a CRIS CPU with a ROM, a RAM

and the XOP accelerator.
The TLM-2.0 version of the emulator has the

CRIS provided by TLMu and all the other devices
provided by the TLM-2.0 system.
The QEMU only version of the system has all

the devices built into a QEMU machine.

4.1 QEMU vs TLMu

Due to the fact that TLMu compiles the emu-
lator system as position independent code, it is
expected that TLMu will run somewhat slower
than QEMU. Additionally, TLMu makes use of the
SystemC/TLM-2.0 global quantum concept, caus-
ing further interruptions of the virtual CPU.
IO acccess, from QEMU to the TLM-2.0 world

need to be translated and forwarded to SystemC,
further adding to the execution times.
In the first test we compare QEMU vs TLMu

with 10 rounds of XOP done in pure guest software,
i.e without any use of the emulated XOP accelera-
tor. TLMu was run with a 10us global quantum.

QEMU: 5.198s

TLMu: 5.257s

TLMu runs 1.1% slower. This is likely due to the
overhead of PIC code and the quantum timer.
Next run, we compare emulation of XOP by use

of the XOP accelerator.

QEMU: 3.454s

TLMu: 3.567s

TLMu runs 3.3% slower. Compared to the previ-
ous run, this adds the overhead of bus transaction
translation into TLM-2.0 generic payload.

2



4.2 The global quantum

When using the loosely timed coding style, TLM-
2.0 uses a global quantum to control the amount
of virtual time a given process is allowed to run
ahead of time. In general, the higher the value, the
longer runs per process, the lower the amount of
context switches and ultimately lower simulation
times. On the other hand, as the quantum gets
higher, the lower the accuracy in the timing of the
emulation.
In some cases, loosing timing accuracy may sig-

nificantly affect the total simulation time. For ex-
ample, if a signal arrives late in time due to a high
global quantum and that signal is meant to signal
the end of simulation, we might end up simulating
much more virtual time than would be needed if we
had better accuracy (i.e lower global quantum). In
the following runs we therefor compare real-time vs
virtual time as well. We use 1ns global quantum as
the reference for the speed comparisons.

1ns global quantum

Real time: 4.367 s

Virtual time: 0.4322 s

Realtime / virtual time: 10.104

10ns global quantum

Real time: 4.318 s (-1.1%)

Virtual time: 0.4322 s

Realtime / virtual time: 9.991 (-1.1%)

100ns global quantum

Real time: 4.225 s (-3.3%)

Virtual time: 0.4322 s

Realtime / virtual time: 9.978 (-3.3%)

200ns global quantum

Real time: 3.953 s (-9.5%)

Virtual time: 0.4322 s

Realtime / virtual time: 9.146 (-9.5%)

500ns global quantum

Real time: 3.716 s (-14.9%)

Virtual time: 0.4322 s

Realtime / virtual time: 8.598 (-14.9%)

1us global quantum

Real time: 3.642 s (-16.6%)

Virtual time: 0.4322 s

Realtime / virtual time: 8.427 (-16.6%)

10us global quantum

Real time: 3.567 s (-18.3%)

Virtual time: 0.4322 s

Realtime / virtual time: 8.253 (-18.3%)

100us global quantum

Real time: 3.559 s (-18.5%)

Virtual time: 0.4324 s (+0.05%)

Realtime / virtual time: 8.231 (-18.5%)

200us global quantum

Real time: 3.883 s (-11.1%)

Virtual time: 0.5578 s (+29%)

Realtime / virtual time: 6.961 (-31.1%)

1ms global quantum

Real time: 8.003 s (+83.3%)

Virtual time: 2.0620 s (+377%)

Realtime / virtual time: 3.881 (-61.6%)

As a note that is not really comparable, running
the same thing on a cycle accurate gate level simu-
lator:

Real time: ~11 hours (+906701%)

Virtual time: 0.43735613 s (+1.2%)

Realtime / virtual time: 90544 (+896020%)

5 Performance estimations

5.1 Performance estimations CPU

TLMu provides the main emulator system (e.g
TLM-2.0) with accounting of it’s execution time.
The timing includes DMI access costs.

The CPU models provided by TLMu are high
level models without internal details of the proces-
sor pipelines. Time is driven by the number of ex-
ecuted instructions. Another limitation in the per-
formance model comes from how TLMu emulates
CPUs, i.e from binary translation. Because TLMu
only performs instruction fetches when translating
code blocks and not when executing them, perfor-
mance estimations may differ significantly from re-
ality.

Despite these limitations, as seen in the previous
section, with a 1ns quantum timer, TLMu manages
to model the timing of the XOP operations with

3



98.8% accuracy at approximately 9000 times the
speed compared to a cycle-accurate RTL simulator.

5.2 Performance estimations cache

TLMu does not provide modeling of caches. If such
are needed, they can be provided by the TLM-2.0
system, but that will require TLMu to be used
without any internal devices, e.g with all the de-
vices provided by the TLM-2.0 system or by an-
other TLMu instance. This will significantly de-
crease the performance of TLMu systems.

6 Software debugging

TLMu can be configured to provide a built-in GDB
stub allowing debugger connections to be estab-
lished to the individual CPU emulators. The cur-
rent implementation has the GDB stub running in
the same thread as the CPU core, meaning that in
TLM-2.0 systems, only one CPU may be interac-
tively controlled at a time.
It is also possible to generate per CPU execution

traces.

References

[1] Fabrice Bellard QEMU, a fast and portable

dynamic translator, 2005.

4


